Метод координат

Перед Вами набор задач, теорем.

- 1. Теорема косинусов.
 - Доказать, что квадрат стороны равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.
- 2. Докажите, что в параллелограмме сумма квадратов диагоналей равна сумме квадратов его сторон.
- 3. Вычислите длину биссектрисы прямого угла прямоугольного треугольника, катеты которого равны а и b.
- 4. Теорема о трех перпендикулярах. Прямая, проведенная на плоскости через основание наклонной перпендикулярно ее проекции, перпендикулярна и самой наклонной.
- 5. В равнобедренном треугольнике ABC (|AB| = |BC| = 8) точка Е делит боковую сторону AB в отношении 3:1, (считая от вершины B). Вычислите угол между векторами CE и CA, если |CA| = 12.

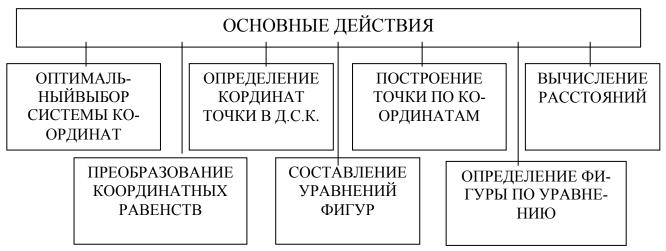
Что же объединяет эти задачи? Это геометрический метод – метод координат. (Несмотря на то, что данные задачи можно решать и другими способами).

А почему метод координат? Каково же его преимущество?


Методом координат называют приложение понятий и формул аналитической геометрии к решению задач и доказательству теорем. Этот метод сводит геометрические задачи к алгебраическим, которые, как вы знаете, по своей природе легче приводятся к последовательности вычислений.

Сила метода в возможности дать предписание для решения этих задач.

- 1. Введите удобным образом прямоугольную систему координат.
- 2. Условие задачи и ее заключение переведите на соответствующий язык, записывая их в координатной форме (на язык координат).
- 3. Докажите или вычислите требуемое с помощью соответствующего алгебраического аппарата (алгебраические вычисления).
- 4. Полученный результат сформулируйте в терминах задачи.


Объективной стороной этого метода являются понятия, на которых базируется этот метод.

(высветить):

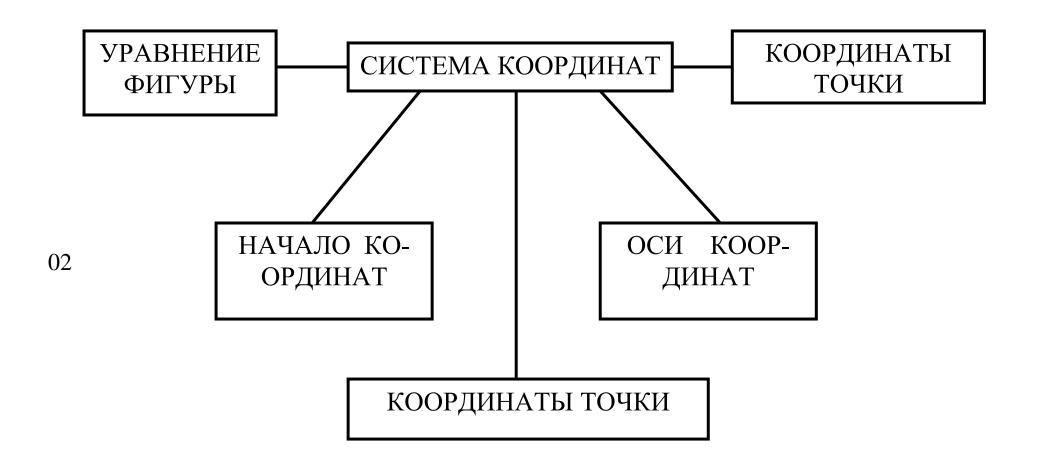
- 1. Система координат.
- 2. Начало координат.
- 3. Оси координат.
- 4. Координаты точки.
- 5. Уравнение фигуры.

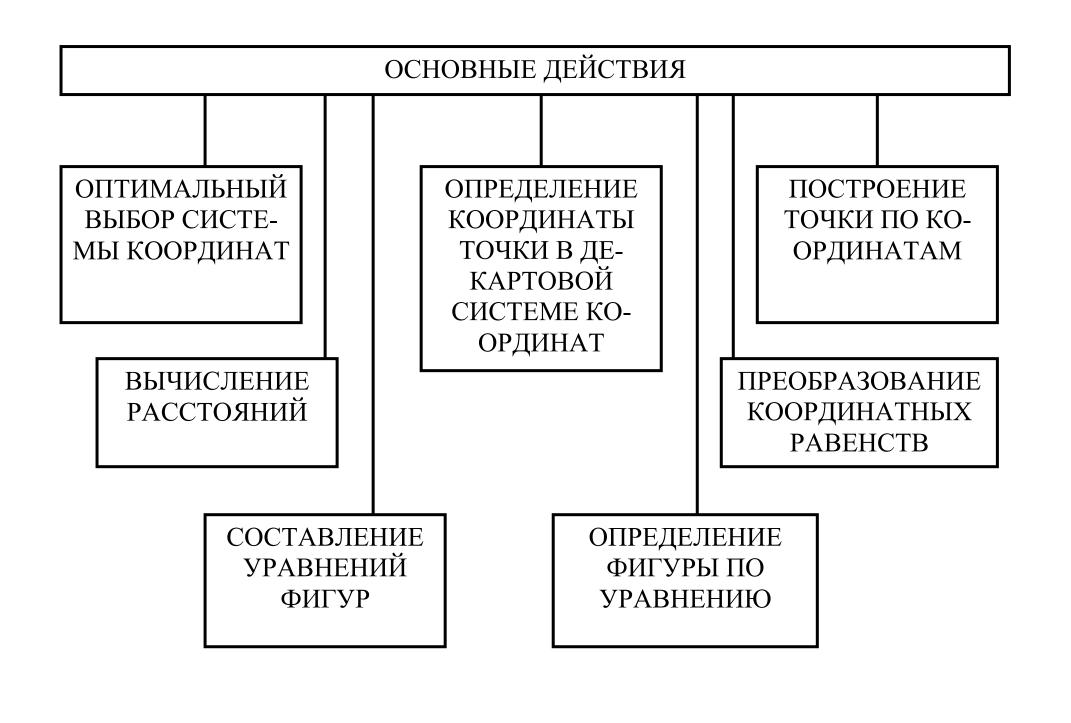
Деятельностная сторона метода – компоненты, умения, которыми должны овладевать учащиеся.

Зная основные понятия метода, его компоненты и его сущность можно дать некоторые методические рекомендации по использованию метода координат.

- 1. Проанализировать задачи учебного пособия (или специально подобранные задачи).
- 2. Выяснить знают ли учащиеся основные понятия метода.
- 3. Проверить знания компонентов (умения).
- 4. Сделать вывод (обобщение) какие задачи можно решать методом координат. Итак, усвоить метод это, значит, овладеть основными понятиями и компонентами, а средство достижения этой цели специально подобранные задачи.

1. Теорема косинусов.


Доказать, что квадрат стороны равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.


2. Докажите, что в параллелограмме сумма квадратов диагоналей равна сумме квадратов его сторон.

- 3.Вычислите длину биссектрисы прямого угла прямоугольного треугольника, катеты которого равны а и b.
- 4. Теорема о трех перпендикулярах. Прямая, проведенная на плоскости через основание наклонной перпендикулярно ее проекции, перпендикулярна и самой наклонной.
- 5. В равнобедренном треугольнике ABC (|AB| = |BC| = 8) точка Е делит боковую сторону AB в отношении 3:1, (считая от вершины В). Вычислите угол между векторами \overrightarrow{CE} и \overrightarrow{CA} , если $|\overrightarrow{CA}| = 12$.

НЕКОТОРЫЕ МЕТОДИЧЕСКИЕ РЕКО-МЕНДАЦИИ К РЕШЕНИЮ ЗАДАЧ

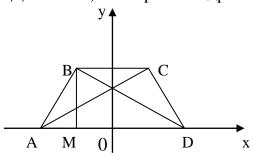
- 1. Проанализировать специально подобранные задачи.
- 2. Выяснить знают ли учащиеся основные понятия метода.
- 3. Проверить знания компонентов (умения).
- 4. Сделать вывод (обобщение) какие задачи можно решать методом координат.

ЗАДАЧА 1.

Высота треугольника, равная 10 см., делит основание на 2 отрезка, равные 10 см. и 4 см. Найдите медиану, проведенную к меньшей из двух других сторон.

ЗАДАЧА 2.

Решить систему уравнений:


$$\begin{cases} x^2 + y^2 = 1 \\ y = x \end{cases}$$

ЗАДАЧА 3.

Пункты A и B соединены одноколейной железной дорогой, по которой как из пункта A в пункт B, так и из пункта B в пункт A ходят поезда с остановками на всех промежуточных станциях. Составить расписание их движения.

Задача.

Докажите, что в равнобедренной трапеции диагонали равны.

Дано: АВСД - равнобедренная трапеция

СД, АД-основания Доказать: ВД=АС.

Доказательство:

- 1.Введем систему координат так, чтобы АД принадлежало оси ОХ, а концы основания были симметричны относительно начало координат.
- 2.Пусть BM=h, BC=2b, AD=2a.

A(-a;0), D(-b;h), C(b;h), D(a;0).

3. Найдем диагонали:

$$BD = \sqrt{(x_d - x_b)^2 + (y_d - y_b)^2} = \sqrt{(a+b)^2 + h^2}$$

$$AC = \sqrt{(x_c - x_a)^2 + (y_c - y_a)^2} = \sqrt{(a+b)^2 + h^2}$$

ВС=АС, то есть диагонали равнобедренной трапеции равны.

Задача

Дан прямоугольник ABCD. Найдите множество всех точек M, для каждой из которых $(AM^2 + DM^2) - (BM^2 + CM^2) = 2AB$.

Дано: ABCD — прямоугольник точка M $(AM^2 + DM^2) - (BM^2 + CM^2) = 2AB$

Найти: множество точек, удовлетворяющих этому равенству.

1. Введем прямоугольную систему координат, чтобы точка A и D принадлежали оси OX,

 $\overrightarrow{OA} = \overrightarrow{OD} = a$;

BA=CD=b.

- 2. A (-a;0); B (-a; b); C (a; b); D(a;0).
- 3. Найдем расстояние от произвольной точки М (х; у) до точек А, В, С, D;

$$BM = \sqrt{(x+a)^2 + (y-b)^2}$$
; $AM = \sqrt{(x+a)^2 + y^2}$;
 $CM = \sqrt{(x-a)^2 + (y-b)^2}$; $DM = \sqrt{(x-a)^2 + y^2}$.

Точка М принадлежит искомому многоугольнику, значит, ее координаты удовлетворяют уравнению

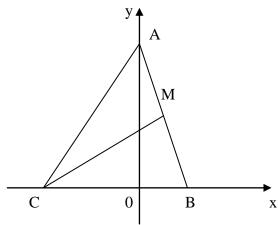
$$(x+a)^{2} + y^{2} + (x-a)^{2} + y^{2} - (x+a)^{2} - (y-b)^{2} - (x-a)^{2} - (y-b)^{2} = 2b^{2}$$

$$2y^{2} - 2(y-b)^{2} = 2b^{2}$$

$$y^{2} - y^{2} + 2by - b^{2} = b^{2}$$

$$2by = 2b^{2}; (b \neq 0)$$

$$y = b$$


4. Искомые множество точек лежат на прямой у = b, которая параллельна оси абсцисс. Этому условию соответствует прямая, содержащая сторону ВС прямоугольника ABCD.

Ответ: прямая ВС.

МЕТОД КООРДИНАТ

Задача

Высота треугольника, равная 10см., делит основание на два отрезка, равные 10см. и 4см. Найдите медиану, проведенную к меньшей из двух других сторон.

Дано: АВС — треугольник,

АН - высота.

CH=10cM.

ВН=4см.

АН=10см.

Найти: медиану, проведенную к

меньшей стороне.

Решение

- 1.Введем прямоугольную систему координат, чтобы основание BC принадлежит оси ОХ, а АН принадлежит оси ОУ.
- 2.A(0;10), B(4;O), C(-10;O).
- 3. Найдем АС и АВ:

AC =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(-10 + 0)^2 + (0 - 10)^2} = \sqrt{200} = 10\sqrt{2}$$
 (cm)
AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(4 - 0)^2 + (0 - 10)^2} = \sqrt{116} = 2\sqrt{29}$ (cm)

АВ<АС, значит СМ- искомая.

4. Используя формулы вычисления координат середины отрезка:

$$X=(0+4)/2=2$$

$$y=(10+0)/2=5$$
.

M(2;5)

Значит, CM=
$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}=\sqrt{(2-(-10))^2+(5-0)^2}=\sqrt{144+25}=13$$
(см)

Ответ:13см.