Физика, 10 класс

Урок по теме:

«Взаимодействие тел в природе. Явление инерции. Инерциальная система отсчета.Первый закон Ньютона»

Цели и задачи урока:

Образовательные:

- 1. Сформулировать понятие об инерциальной системе отсчёта, раскрыть её преимущества при описании механического движения;
- 2. Ввести понятия о взаимодействии тел и свободном теле;
- 3. Добиться усвоения учащимися формулировки 1-го закона Ньютона;
- 4. Продолжить формирование знаний о природе, явлениях и законах в единой системе;
- 5. Повторить физическое содержание явления инерции;
- 6. Ознакомить учащихся с применением 1-го закона Ньютона.

Воспитательные:

- 1. Продолжить воспитание отношения к физике, как к интересной и необходимой науке;
- 2. Воспитывать в ребятах уважение и доброжелательность друг к другу, умение слушать ответ товарища;
- 3. Формировать у учащихся аккуратность, при работе с записями в тетради.

Развивающие:

- 1. Продолжить формирование умения высказывать умозаключения;
- 2. Развитие самостоятельности в суждениях;
- 3. Развитие логического мышления; развивать умение ставить мысленный эксперимент; развивать у учеников память, внимание; формировать умение решать качественные задачи.

Форма урока: урок изучения нового материала.

Оборудование: компьютер, интерактивная доска, программно-методический комплекс «Интерактивные творческие задания. Физика 7–9 класс», учебник «Физика 10», Ю.И. Дик, Л.Э. Генленштейн

Ход урока

1. Организационный момент

Приветствие, выявление отсутствующих, проверка готовности учащихся к уроку.

2. Повторение

Учитель: Ответьте, пожалуйста, на следующие вопросы:

- 1. Что называют механическим движением?
- 2. Какие виды движений (по траектории, скорости, ускорению) мы изучали?

- 3. Какие из них наиболее распространены в природе и технике?
- 4. Что такое материальная точка? Зачем это понятие вводится?
- 5. Что называют системой отсчёта? Для чего она необходима?
- 6. Какое явление вы наблюдаете на рисунке?
- 7. Объясните, почему, споткнувшись, человек падает вперёд (ноги резко останавливаются, а тело продолжает двигаться по инерции в прежнем направлении), а, поскользнувшись, человек падает назад (ноги начинают двигаться с большей скоростью, чем тело).
- 8. Придёт ли в движение парусная лодка под действием потока воздуха от вентилятора, установленного на ней?
- 9. Барон Мюнхгаузен рассказывал, как он однажды разбежался и прыгнул через болото. Во время прыжка он заметил, что не допрыгнет до берега. Тогда он в воздухе повернул обратно и вернулся на тот берег, с которого прыгал. Возможно ли это?

Вывод: Мгновенно тело изменить свою скорость не может. Для изменения скорости тела необходимо другое тело. Явление сохранения скорости тела при отсутствии действия на него других тел называют инерцией.

3. Подготовительный этап (подведение учащихся к целям урока).

Формулировка проблемы:

– Как известно, кинематика отвечает на вопросы «Что? Где? Когда? и Как?» (какое тело, где и когда находится, как движется), но не отвечает на вопрос «Почему?» (почему оно движется именно так, а не по-другому).

4. Изучение новой темы урока.

Учитель: Сегодня мы приступаем к изучению нового раздела **Механики** — **Динамика.**Динамика изучает причины изменения скорости. Основные законы **Динамики** — законы Ньютона. И сейчас мы приступаем к изучению **первого закона Ньютона**.

Прежде чем найти причину изменения скорости, т.е. возникновения ускорения, мы выясним, при каких условиях тело движется без ускорения, т.е. его скорость с течением времени не меняется.

Обратимся к опыту, к наблюдениям: на столе лежит книга. Про неё говорят, что она покоится.

В IV веке до н.э. Аристотель писал: "Всякое движение – бывает или насильственным, или происходящим по природе". К последним он относил круговые движения небесных светил, а также считал их присущими самим телам и не нуждающимися в каких-либо внешних причинах.

Если какое-либо движение отличается от естественного, то оно может быть осуществлено лишь насильственным путём. В отношении таких движений Аристотель писал: "Всё движущиеся необходимо приводится в движение чем-нибудь". Иными словами, причина "неестественного" движения — действие со стороны других тел. Нет действия других тел — нет движения.

Чтобы сдвинуть книгу, необходимо приложить усилие, например, толкнуть рукой.

Книга не одинока в этом мире, её окружают другие тела, они в различной мере действуют на неё. Почему же она покоится? Только два тела, из всех её окружающих, оказывают на неё заметное действие — это стол и Земля. Действия их противоположны и равны. Говорят, что Земля и стол компенсируют друг друга (уравновешивают).

Рассмотрим ещё примеры: шарик на нити, шайба на льду, автомобиль на парковке и др. *Учащиеся дают пояснения по примерам*.

Вывод: если действия тел компенсируют друг друга, то тело под влиянием этих тел находится в состоянии покоя.

Этот ошибочный закон Аристотеля продержался около 2000 лет. Почему ошибочный?

Т.к. равномерное и прямолинейное движение — это тоже движение без ускорения. Следовательно, и покой, и прямолинейное равномерное движение могут наблюдаться при одном и том же условии: действие на данное тело всех других тел должно компенсироваться. Так что же, справедливо утверждение Аристотеля: "Всё, что находится в движении, движется благодаря воздействию другого"?

Об основном положении динамики размышлял и Галилей: "Степень скорости, обнаруживаемая телом, нерушимо лежит в самой его природе, в то время как причины ускорения или замедления являются внешними". Другими словами: тело свободное от воздействий, не меняет скорость. Если на данное тело действует другое тело, то первое тело изменяет свою скорость (второе тело тоже)!

Очень трудно понять, что тела сохраняют в этих условиях (при компенсации воздействия) постоянной свою скорость, т.е. продолжают двигаться равномерно и прямолинейно. Если по шайбе, лежащей на гладком льду ударить клюшкой, она будет двигаться, но всё же остановится. Почему? Трение о лёд.

Как это доказать людям справедливость его суждения?

Галилей предложил к опыту подключить разум и логику следующим образом: если невозможно избавиться от взаимодействия тел совсем, то действие можно уменьшать.

Вывод: Мысленный эксперимент Галилея показывает, что при уменьшении угла второй гладкой наклонной плоскости тело можно приближённо считать свободным. Оно должно двигаться бесконечно долго.

Все мы знаем, что движение и покой относительны. В одних системах отсчёта, тело может покоиться, относительно других в это же время двигаться с ускорением.

Обсуждение рассматриваемых проблем и формулировка выводов.

Обсуждение поставленной проблемы:

- Две точки зрения на причину движения: Галилей и Ньютон (провести сравнительный анализ) *работа в группах*
 - Камень, брошенный в воду, тонет; корабль, спускаемый на воду, остается на плаву. Постараемся ответить на вопрос, почему это происходит? В этом нам поможет раздел физики, называемый динамикой
- И камень, и корабль взаимодействуют с окружающими телами (землей и водой). Земля притягивает оба тела к себе, вода оба тела выталкивает. При этом и камень, и корабль действуют на воду и, как мы скоро узнаем, на землю. Т. е. между телами происходит взаимодействие. Чтобы описать эти взаимодействия, в физике вводят специальные физические величины, называемые силами. Вспомним, как называется сила притяжения тел к земле. Как называется сила, действующая на тела, погруженные в жидкость? Да, это сила тяжести и сила Архимеда. А еще в механике рассматривают силы упругости и силы трения. Действуют ли какие-либо из этих сил в рассмотренных примерах? Да, и на камень, опускающийся на дно, и на корабль, скользящий по воде, действуют силы трения. В случае с камнем трение о воду называют силой сопротивления воды. А действуют ли силы упругости? Стапели действуют на спускаемое судно силой

упругости, дно действует на утонувший камень силой упругости. И корабль, и камень действуют силами упругости на воду и на другие тела, с которыми они соприкасаются. Как видим, мы обнаружили много действующих сил в рассматриваемых примерах, но будем рассматривать только силы, действующие на неподвижный корабль и на тонущий камень. Сделаем в тетрадях чертежи и начертим эти силы. Вспомним, в каких единицах измеряются силы. Поставим стрелочки, изображающие силу тяжести и силу Архимеда в компьютерных анимациях для корабля и для камня.

Формулировка первого закона Ньютона.

Решение проблемы. Формулировка первого закона Ньютона:

– Итак, на неподвижный корабль на поверхности воды действуют две силы: вниз направлена сила тяжести, вверх - сила Архимеда. Такие же две силы действуют на тонущий камень (кроме того, на него действует сила сопротивления воды, тоже направленная вверх, но при небольших скоростях движения камня эта сила мала, и мы будем ею пренебрегать, в физике так поступать приходится часто). Итак, в обоих случая действуют две противоположные силы, а результат разный: камень тонет, а корабль не движется. Почему? На этот вопрос ответил Ньютон. Сила, которая тянет камень вниз, больше, чем сила, толкающая камень вверх. Силы, действующие на корабль, уравновешены. Покажем это на компьютерной модели – задание «Сложение сил». Установим стрелки, изображающие силу тяжести (эта стрелка направлена вниз), и стрелки, изображающие архимедову силу (они направлены вверх). Как видно из модели, силы, действующие на корабль, уравновешены, а на камень действует сила тяжести, большая архимедовой силы. Согласно первому закону Ньютона, в инерциальных системах отсчёта тела не меняют скорости поступательного движения (т. е. движутся прямолинейно и равномерно) при условии, что воздействия на них со стороны других тел отсутствуют, либо уравновешены. Покоящееся тело также не меняет скорости. Покой – частный случай равномерного прямолинейного движения.

Существуют такие системы отсчёта, относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действие других тел скомпенсировано.

Такие системы отсчёта называют **инерциальными.** (ИСО). Иногда первый закон Ньютона называют законом инерции, а равномерное движение тела относительно ИСО называют движением по инерции.

Любая система отсчета, движущаяся относительно ИСО равномерно и прямолинейно, также является инерциальной. Таким образом, существует бесконечно много ИСО, которые движутся относительно друг друга с неизменными по величине и направлению скоростями.

5. Закрепление.

Применение полученных знаний для объяснения реальных физических явлений и компьютерных моделей.

- 1. С железнодорожным составом связана система отсчета. В каких случаях она будет инерциальной: а) поезд стоит на станции; б) поезд отходит от станции; в) поезд подходит к станции; г) движется равномерно на прямолинейном участке пути дороги?
- 2. По горизонтальной прямолинейной дороге равномерно движется автомобиль с работающим двигателем. Не противоречит ли это первому закону Ньютона
- 3. Инерциальная ли система отсчета, движущаяся с ускорением, относительно какойлибо инерциальной системы?

- 4. Приведите примеры, в которых проявляется закон Ньютона.
- 1. Выполнение упражнений работа в парах
- 2. Самостоятельная работа (карточки задания)

6. Подведение итогов урока, домашнее задание.

Итоги урока:

 Сформулируем итоги урока: характер движения тел определяется характером их взаимодействия с другими телами. Для количественной оценки взаимодействия используют физическую величину, называемую силой. Сила измеряется в ньютонах. В механике рассматривают силы тяжести, упругости, трения, архимедову силу. Результат действия сил на тело зависит от системы отсчета, в которой мы рассматриваем тело. В инерциальных системах отсчета справедлив первый закон Ньютона.

Аристотель: при отсутствии внешнего воздействия тело может только покоиться. Чтобы тело двигалось с постоянной скоростью, на него постоянно должна действовать сила.

Галилей: при отсутствии внешних воздействий тело может не только покоиться, но и двигаться прямолинейно и равномерно, а сила, которая к нему прикладывается необходима только для компенсации других сил (трения, тяжести и т.д.).

Ньютон: обобщил вывода Галилея, сформулировал закон инерции (I закон Ньютона).

7. Домашнее задание.